
Classifying Phishing URLs Using
Recurrent Neural Networks

Alejandro Correa Bahnsen†, Eduardo Contreras Bohorquez∗, Sergio Villegas†,
Javier Vargas† and Fabio A. González∗

†Easy Solutions Research
∗MindLab Research Group, Universidad Nacional de Colombia, Bogotá

Email: acorrea@easysol.net, econtrerasb@unal.edu.co, svillegas@easysol.net, jvargas@easysol.net, fagonzalezo@unal.edu.co

Abstract—As the technical skills and costs associated with
the deployment of phishing attacks decrease, we are witnessing
an unprecedented level of scams that push the need for better
methods to proactively detect phishing threats. In this work,
we explored the use of URLs as input for machine learning
models applied for phishing site prediction. In this way, we
compared a feature-engineering approach followed by a random
forest classifier against a novel method based on recurrent neural
networks. We determined that the recurrent neural network
approach provides an accuracy rate of 98.7% even without the
need of manual feature creation, beating by 5% the random forest
method. This means it is a scalable and fast-acting proactive
detection system that does not require full content analysis.

Keywords—Phishing detection; Cybercrime; Feature engineer-
ing; Recurrent neural networks; Long short term memory networks.

I. INTRODUCTION

Phishing attacks are a growing problem worldwide. Ac-
cording to the Anti-Phishing Working Group (APWG), phish-
ing websites increased by 250% from the last quarter of 2015
to the first quarter of 2016, targeting more than 400 brands
each month [1]. This is the most the APWG has ever seen
since they began tracking and reporting on phishing in 2004.
Phishing, by definition, is the act of defrauding an online user
by posing as a trustworthy institution or entity in order to
obtain personal information [2]. The use of phishing by a
criminal is centered around using social engineering schemes
to steal personal and financial information. The attacks are
designed to lead consumers to reveal financial data such as
usernames and/or passwords in fraudulent websites posing as
legitimate entities. [1], [3].

Nowadays, phishing attacks can be launched from any-
where in the world at insignificant costs by people with little
to no technical skills [4]. Organizations trying to protect their
users from these attacks are having a hard time dealing with
the massive amount of emerging sites, which must be identified
and labeled as malicious or harmless before users can access
them.

There is no shortage of methods at the time of distributing
attacks, and phishers enjoy a wide range of techniques for mak-
ing a site appear legitimate while evading detection [4], [5].
However, at the end of the day, all of them rely on URLs that

redirect their victims to the phishing trap. Impersonating legit-
imate URLs is the most common social engineering method a
phisher can use to lure victims to their website. Therefore, a
solid first step towards blocking fraud sites is to use the URLs
themselves to screen possible phishing websites [6].

Being able to determine the maliciousness of a website
by simply evaluating its URL provides a major strategic
advantage. The number of victims can be reduced to nearly
zero while minimizing operational efforts by avoiding massive
use of more complex methods such content analysis [7].

For this work, we focused on using machine learning
techniques for the classification of phishing sites using only
their URLs. Specifically, we compared the combination of
lexical and statistical analysis of URLs as input for a random
forest (RF) classifier against a novel approach that employs
recurrent neural networks, more particularly, a long/short
term memory network (LSTM). RFs, with manually-created
features, have been widely used for classification problems
[8]. Moreover, this method has been successfully applied to
identifying phishing URLs [9]. On the other hand, LSTM
models are competent at detecting long patterns in sequences
and have been applied to solve different text analysis problems
[10]. The LSTM method does not require the manual extraction
of features, since it directly learns a representation from the
URL’s sequence of characters [11]. Recently, they have been
used to detect domain-generated algorithms [12], showing
great promise for the infosec industry. To the best of our
knowledge, this is the first time that the LSTM model has
been applied to the detection of phishing URLs.

To evaluate both approaches, we took a corpus comprised
of one million phishing URLs extracted from Phishtank1 and
one million harmless URLs from CommonCrawl2. The results
show that despite using the URLs as sole input, the RF and
the LSTM methods achieved an accuracy rate of 93.5% and
98.7%, respectively. Additionally, we compared both methods
in terms of training and evaluation times, and the amount of
data needed to converge.

The remaining of this paper is organized as follows: In
Section II, we will provide a background on the problem,
as well as any related work on phishing detection. Sections

1PhishTank (https://www.phishtank.com/)
2Common Crawl (http://commoncrawl.org/)

978-1-5386-2701-3/17/$31.00 c© 2017 IEEE

III and IV will provide in-depth descriptions of both machine
learning methods. Subsequently, in Section V, we will describe
the data and methodology used for the experiments. Section VI
presents the experimental results. Finally, we will provide the
conclusions of the paper in Section VII.

II. BACKGROUND

A. Phishing Detection

Phishing URL detection can be done via proactive or
reactive means. On the reactive end, we find services such
as Google Safe Browsing API3. This type of services expose
a blacklist of malicious URLs to be queried. Blacklists are
constructed by using different techniques, including manual re-
porting, honeypots, or by crawling the web in search of known
phishing characteristics [13], [14]. For example, browsers
make use of blacklists to block access upon reaching the URLs
contained in them. One drawback of such reactive method is
that in order for a phishing URL to be blocked, it must be
previously included in the blacklist. This implies that web users
remain at risk until the URL is submitted and the blacklist is
updated. What is more, since the majority of phishing sites are
active for less than a day [14], [15], their mission is complete
by the time they are added to the blacklist.

Proactive methods mitigate this problem by analyzing the
characteristics of a web page in real time in order to assess the
potential risk of a web page. Risk assessment is done through
a classification model [16]. Some of the machine learning
methods that have been used to detect phishing include:
support vector machines [17], streaming analytics [18], gra-
dient boosting [6], [19], random forests [20], latent Dirichlet
allocation [21], online incremental learning [22], and neural
networks [23]. Several of these methods employ an array of
website characteristics, which mean that in order to evaluate
a site, first it has to be rendered before the algorithm can be
used. This adds a significant amount of time to the evaluation
process [24], [25]. Using URLs, instead of content analysis,
reduces the evaluation time because only a limited portion of
text is analyzed.

Lately, the application of machine learning techniques
for URL classification has been gaining attention. Several
studies proposing the use of classification algorithms to detect
phishing URLs have come to the light in recent years [6], [20],
[26]. These studies are mainly focused on creating features
through expert knowledge and lexical analysis of the URL.
Then, the phishing site’s characteristic are used as quantitative
input for the model. The model in turn learns to recognize
patterns and associations the inputs must follow in order to
label a site as legitimate or malicious.

B. Uniform Resource Locator Structure

The Uniform Resource Locator (URL), as specified in
the RFC 1738 [27], is a string representation for a resource
available on the Internet.

A URL is written as follows:

< scheme >:< scheme− specific− part >

3https://safebrowsing.google.com/

The scheme specifies the resource’s access mechanism or
network location (e.g. http, ftp, mailto), while the rest of the
URL may vary depending on the scheme selected. For the
HTTP protocol, a possible syntactic construction for the next
part can be:

// < host >:< port > / < URL− path >

It starts with the domain name or IP address of a network host.
Then, there is the port number to connect to and the URL-path
that provides details on how the resource can be accessed (e.g.
http://host.com:80/page).

III. CLASSIFYING PHISHING USING URL LEXICAL AND
STATISTICAL FREQUENCIES

In this section, we will describe our approach to combine
the lexical and statistical analysis of a URL with a random
forest classifier to classify phishing websites based on URL
features. The process is summarized in Fig. 1. First, a series
of important variables are extracted with a feature-engineering
approach. Then, a classification algorithm is used to build the
model.

A. Feature Engineering

The attackers’ objective when crafting a phishing URL is
to trick users into thinking it is a legitimate website. In this
way, the cybercriminal hopes users will reveal their personal
and financial information. In order to achieve this, the attackers
follow certain tried-and-true patterns, which can be detected
by an experienced eye. In collaboration with security analysts
at Easy Solutions, Inc.4, we identified a set of 14 features that
can be used to create lexical and statistical analysis of URLs:

• Domain exists in Alexa rank5: If the domain exists
among the top one million Alexa domains. The Alexa
rank is a list of domains arranged by internet popular-
ity. Most phishing sites are hosted in hacked legitimate
sites or new domains. If the phishing is hosted in a
hijacked website, it is unlikely the domain is part of
the top Alexa domains, since top-ranked domains tend
to have better security measures. If the phishing is
hosted in a newly-registered domain, the domain will
not appear in the Alexa rank.

• Subdomain length: This takes the subdomain’s URL
length. Phishing sites try to mimic the legitimate site’s
URL by using its domain as their sub domain. Real
websites tend to have a short subdomain.

• URL length: This takes the URL’s length. A long URL
increases the odds of confusing the user.

• Path length: This takes the URL’s path length. Phish-
ing URLs tend to have a longer path than the legiti-
mate ones.

• URL Entropy: Calculates URL entropy. The higher
the entropy of a URL, the more complex it is. Since
phishing URLs tend to have random text, we can
attempt to find them by their entropy.

4https://www.easysolutions.net
5http://www.alexa.com/

Fig. 1. Feature-engineering approach for classifying phishing URLs. First, a series of important variables are extracted with a feature-engineering approach.
Then, a classification algorithm is used to build the model.

• Length ratio: Calculates the ratio between URL length
and path length. In [20] they concluded that phishing
URLs tend to have a higher ratio than legitimate
URLs.

• ’@’ and ’-’ count: Counts @ and - characters in the
URL. In accordance with [20] this feature is added.
In URLs, everything to the left of @ gets ignored. In
light of this, phishing URLs use it to deceive users.
For example goodURL.com@phishURL.com.

• Punctuation count: The count of . ! # $ % & , .
; ’ in the URL. In [20], they found that phishing
URLs usually show a higher occurrence of punctuation
count.

• Other TLDs count: The number of TLDs that appear
in the URL’s path. Phishing URLs try to impersonate
legitimate URLs by using their domain and TLD in
the path.

• Is IP: If the URL is an IP instead of a domain. It is a
feature that has been used in the literature.

• Suspicious words count: The number of suspicious
words in the URL. Suspicious words include ’con-
firm’, ’account’, ’secure’, ’webscr’, ’login’, ’signin’,
’submit’, ’update’, ’logon’, ’secure’, ’wp’, ’cmd’ and
’admin’. They were chosen manually by observing
phishing URLs.

• Euclidean distance: The Euclidean distance between
English characters in the URL. This feature, and the
following two, attempt to measure how much the URL
differs from common English.

• Kolmogorov-Smirnov statistic: Calculates the two-
sample Kolmogorov-Smirnov statistic on character
frequencies between the URL and English.

• Kullback-Leibler divergence: Calculate the Kullback-

Leibler divergence on the character frequencies be-
tween the URL and English.

B. Classification Algorithm

Once the features are extracted, a binary classifier is trained
using the presented URL features. We use a random forest
(RF) [28] method to achieve this. An RF is a classification
algorithm that relies on weaker models to build a stronger
model with the average of the weaker model responses. The
weaker models used are classification trees and each one of
them recursively splits the data set based on feature values,
and stops the current split when all input instances belong to
the same class. We chose RF since it is widely used [8] and
can be trained to run in parallel.

IV. MODELING PHISHING URLS WITH RECURRENT
NEURAL NETWORKS

In the previous section, we designed a set of features
extracted from a URL and fed them into a classification model
to predict whether a URL is a case of phishing. We now
approach the problem in a different way. Instead of manually
extracting the features, we directly learn a representation from
the URL’s character sequence.

Each character sequence exhibits correlations, that is,
nearby characters in a URL are likely to be related to each
other. These sequential patterns are important because they can
be exploited to improve the performance of the predictors [11].

A neural network is a bio-inspired machine learning model
that consists of a set of artificial neurons with connections
between them. Recurrent Neural Networks (RNN) are a type
of neural network that is able to model sequential patterns.
The distinctive characteristic of RNNs is that they introduce
the notion of time to the model, which in turn allows them to
process sequential data one element at a time and learn their
sequential dependencies [10].

Fig. 2. Recurrent neural network for classifying phishing URLs based on LSTM units. Each input character is translated by an 128-dimension embedding. The
translated URL is fed into a LSTM layer as a 150-step sequence. Finally, the classification is performed using an output sigmoid neuron.

One limitation of general RNNs is that they are unable to
learn the correlation between elements more than 5 or 10 time
steps apart [29]. A model that overcomes this problem is Long
Short Term Memory (LSTM). This model can bridge elements
separated by more than 1,000 time steps without loss of short
time lag capabilities [30].

LSTM is an adaptation of RNN. Here, each neuron is
replaced by a memory cell that, in addition to a conventional
neuron representing an internal state, uses multiplicative units
as gates to control the flow of information. A typical LSTM
cell has an input gate that controls the input of information
from the outside, a forget cell that controls whether to keep or
forget the information in the internal state, and an output gate
that allows or prevents the internal state to be seen from the
outside.

In this work, we used LSTM units to build a model that
receives as input a URL as character sequence and predicts
whether or not the URL corresponds to a case of phishing.
The architecture is illustrated in Fig. 2. Each input character is
translated by a 128-dimension embedding. The translated URL
is fed into a LSTM layer as a 150-step sequence. Finally, the
classification is performed using an output sigmoid neuron.
The network is trained by backpropagation using a cross-
entropy loss function and dropout in the last layer.

V. EXPERIMENTAL SETUP

A. Data

To train both models, a dataset of real and phishing URLs
was constructed. In total, 2 million URLs were used in the
training process. Half of them legitimate and half of them
phishing. The legitimate URLs came from Common Crawl,
a corpus of web crawl data. The phishing URLs came from
Phishtank, a website used as phishing URL deposit. In TABLE
I, a sample of ten legitimate URLs and ten phishing URLs are
shown. Note how similar the legitimate and malicious URLs
can actually be. This is expected as the objective of an attacker

Fig. 3. URL length distribution. It is shown that the phishing and legitimate
URLs have a very similar length distribution, confirming that they are quite
similar and difficult to tell apart.

is to confuse web users by making the phishing site look as
genuine as possible.

Moreover, in Fig. 3, a comparison of the URL length
distribution is presented. It can be observed that the phishing
pages tend to have slightly longer URLs (measured in number
of characters).

B. Experiment Design

In order to evaluate the performance of the models, we
used a 3-fold cross-validation strategy. This process consists
of splitting data in 3 folds. Then train the data using two folds
while the remaining one is used for model validation. This
process is repeated 3 times, only using each fold for validation
once. In the end, all the performance metrics on validation

TABLE I. SAMPLE OF THE RAW URL DATABASE. SHOWN IS THE SIMILARITY OF LEGITIMATE AND PHISHING URLS. THIS IS EXPECTED AS THE
OBJECTIVE OF AN ATTACKER IS TO CONFUSE THE VICTIM BY MAKING THE PHISHING SITE LOOK AS HARMLESS AS POSSIBLE.

URL Phish
http://www.cheatsguru.com/pc/the sims 3 ambitions/requests/ False
http://www.sherdog.com/pictures/gallery/fighter/f 1349/137143/10/ False
http://www.mauipropertysearch.com/maui-meadows.php False
https://www.sanfordhealth.org/HealthInformation/ChildrensHealth/Article/73980 False
http://strathprints.strath.ac.uk/18806/ False
http://www.grahamleader.com/ci 25029538/these-are-5-worst-super-bowl-halftime-shows False
http://www.nwherald.com/2014/04/14/rizzo-homers-for-cubs-in-loss-to-cardinals/apxo9hf/ False
http://th.urbandictionary.com/define.php?term=politics&defid=1634182 False
http://www.carolinaguesthouse.co.uk/onlinebooking/?industrytype=1&startdate=2013-09-05&nights=2&windowsearch=0&location&productid=25d47a24-6b74-46... False
http://www.lander.edu/Business-Administration/Human-Resources/new-employees/policies-procedures False
http://msystemtech.ru/components/com users/Italy/zz/Login.php?run= login-submit&session=68bbd43c854147324d77872062349924&=68bbd43c854147324d778720... True
http://moviesjingle.com/auto/163.com/index.php True
http://any3.co.nz/wp-includes/Text/pp/5885d80a13c0db1f8e%26ee%3D111e61ae3eeb78bcbc5ec9fa804ee562/5885d80a13c0db1f8e%26ee%3D111e61ae3eeb78bcbc5ec9f... True
http://paypal.com.update.account.toughbook.cl/8a30e847925afc5975161aeabe8930f1/?cmd= home&dispatch=d09b78f5812945a73610edf3852f5ebed09b78f5812945a... True
http://www.zeroaccidente.ro/cache/mod login/home/37baa5e40016ab2b877fee2f0c921570/ True
http://mail.kungfuexperience.co.uk/user-verfication/216545649874az6548945648t754867t56/5959730380a7dbe17368373c106f5866 True
http://www.argo.nov.edu54.ru/plugins/system/applse3/54e9ce13d8baee95696633257b33b2b5/ True
http://rarosbun.rel7.com/ True
http://tech2solutions.com/home/wp-admin/includes/trulia/index.html True
http://esxcc.com/js/index.htm?http://us.battle.net/login/en/?ref=http://ruuyqyrus.battle.net/d3/en/index& True

folds are averaged. In this way, the variance is reduced and
we can obtain a better estimate of the model’s performance.

The performance evaluation is done using standard classi-
fication evaluation measures, as described below:

• Accuracy = TP+TN
TP+TN+FP+FN

• Recall = TP
TP+FN

• Precision = TP
TP+FP

• F1-Score = 2 Precision·Recall
Precision+Recall ,

where TP and FN are the numbers of true and false negatives
respectively. We define the phishing URLs as positive and the
legitimate/ham ones as negative. Lastly, we also used the ROC
curve to evaluate AUC statistic.

VI. RESULTS

In this section we present the experimental results. First, we
evaluated the performance of the traditional feature engineer-
ing plus the classification-algorithm methodology presented
in Section III. We created 14 features based on the URL’s
lexical and statistical analysis. Then, we trained a random
forest classifier with 100 decision trees. We used the random
forest implementation of the Scikit-Learn library [31].

Using the 2,000,000 URLs described above, we tested the
accuracy of the model using a 3-fold cross validation strategy.
The results are shown in TABLE II. The average accuracy
of the model stands at 93.47%, with a recall of 93.28% and
precision of 93.63%. We also evaluated the AUC of the model
for each fold (ROC curves are shown in Fig. 4. In average,
the models show an AUC statistic of 98.44%. Moreover, the
models provide consistent results as the standard deviation of
the accuracy folds is 0.01%, and 0.0008% for the AUC.

Furthermore, we analyzed which features were more im-
portant for performing classification in the random forest
classifier. This is done by counting the number of times each
feature was selected in the different decision trees inside the
random forest. Feature importance is shown in Fig. 5. The most
important feature for the algorithm is the number of suspicious
words in the URL. This is not surprising since attackers will

TABLE II. RESULTS RANDOM FOREST

Fold AUC Accuracy Recall Precision F1-score
0 0.984499 0.934818 0.932642 0.936632 0.934633
1 0.984458 0.934782 0.932798 0.93663 0.93471
2 0.984489 0.934588 0.93302 0.935924 0.934469

Average 0.984482 0.934729 0.93282 0.936395 0.934604
Std dev 1.8e-05 0.000101 0.000155 0.000333 0.0001

Fig. 4. ROC curve random forest classifier. In average, the models have an
AUC statistic of 98.44% and a standard deviation of 0.0008%.

try to deceive users by employing suspicious words known by
the victims. Also, it is observed that phishing URLs tend to
have a higher length ratio between the length of the path and
the hostname.

Afterwards, we trained the LSTM network as described
in Section IV. In particular, we used the implementation of
the Keras [32] with a Theano [33] backend. We defined the
number of epochs to be 20, and for each fold, we used 90%
of the data for training, and 10% for internal validation. In
Fig. 6, the learning curve of the LSTM network is shown.
It is observed that in just 20 epochs, the validation accuracy
converges, increasing to over 98% from epoch 10 onward.

Fig. 5. Feature importance of the random forest classifier. The most important
features are the number of suspicious words and the ratio of the path and
hostname lengths.

Fig. 6. Learning curve LSTM network. The learning curve shows that in
just 20 epochs the validation accuracy converges, increasing to over 98% from
epoch 10 onwards.

As shown in TABLE III, the LSTM model has an average
accuracy of 98.76%, with a standard deviation of just 0.03%,
suggesting stable performance across the different folds. More-
over, as shown in Fig. 7, the AUC of the model is very high,
having an average of 99.91%.

Fig. 7. ROC curve LSTM. The AUC of the model is very high, having an
average of 99.91%.

TABLE III. RESULTS LSTM NETWORK

Fold AUC Accuracy Recall Precision F1-score
0 0.999044 0.9871 0.991114 0.983203 0.987143
1 0.999106 0.987921 0.989549 0.986359 0.987952
2 0.999141 0.987844 0.98716 0.988506 0.987833

Average 0.999097 0.987622 0.989274 0.986023 0.987642
Std dev 4e-05 0.00037 0.001626 0.002178 0.000357

Comparison of the methods

First, we compared the accuracy and F1-Score of both
methods. The comparisons are presented in Fig. 8a and Fig. 8b.
For both measures, the difference between models is consistent
across folds. In average, the LSTM network has an accuracy
5% higher than the feature-engineer model with RF. Similar
results were found for the F1-Score.

We also compared the accuracy of the models using
different numbers of URLs for training. For this experiment,
we randomly selected 200,000 URLs and use them to test the
different models. Then, we selected samples of sizes 1,000,
5,000, 10,000, 50,000, 100,000, 500,000 and 1,000,000, and
trained both methods in each sample. The results are sum-
marized in Fig. 9. The LSTM model consistently outperforms
the RF model. Also, the LSTM network improves its own
performance faster than the RF, as the number of training
URLs increases.

Lastly, we compared the training and evaluation times for
both models. The comparison took place on a Lenovo Y50
machine with 16 GB of memory, an Intel Core i7-4710HQ
CPU @ 2.50GHz x8 processor, and a GeForce GTX 860M
GPU. As can be seen in TABLE IV, the LSTM model requires
significantly more time to train. Using the 2 million URLs, the
RF is trained in an average time of less than 3 minutes. On the
other hand, LSTM requires 238 minutes. It should be pointed
out that once the models have been trained, the RF method is
able to evaluate 942 URLs per second compared to the 281
URLs per second of the LSTM method. However, the memory
requirements of the RF model are almost 500 times higher than
those for LSTM. This is directy related to the complexity of
storing the model parameters.

(a) Accuracy by Fold (b) F1-Score by Fold

Fig. 8. It is observed that the LSTM method consistently outperforms the random forest in each fold. Moreover, the accuracy and F1-Score are stable between
folds, which suggest a highly robust model.

Fig. 9. Comparison of model accuracy vs number of training URLs. For
this experiment, we randomly selected 200,000 URLs and use them to test
the models. It is observed that the LSTM model consistently outperforms the
RF model, improving its performance faster as the number of training URLs
increases and arriving to a near perfect classification with less training cases.

VII. CONCLUSIONS AND DISCUSSION

We explored how well we can discern phishing URLs from
legitimate URLs using two methodologies: feature-engineering
with a lexical and statistical URL analysis with a random forest
(RF) classifier, and a novel approach using a long/short term
memory neural network (LSTM). The former has been widely
used since the 1990s, the latter is a newer method within
recurrent neural networks. In order to evaluate the approaches,
we used a database comprised of one million legitimate URLs

TABLE IV. COMPARISON OF THE METHODS

Method Training Time Evaluation Time Memory Consumption
minutes URLs per second MB

RF 2.95 ± 0.11 942.12 ± 95.02 288.7
LSTM 238.7 ± 0.79 280.90 ± 64.48 0.581

from the Common Crawl database and one million phishing
URLs from Phishtank. Both models showed great statistical
results. On one hand the RF had an F1-Score of 0.93 and an
accuracy of 93.5%, while the LSTM had F1-Score of 0.98 and
an accuracy of 98.7%.

With these results, we can conclude that discerning URLs
by their patterns is a good predictor of phishing websites. The
results yield that creating an URL-based proactive phishing
detection system is a much more feasible approach than doing
full-content analysis. In comparison, this system would exhibit
faster responses, since full-content analysis is not required.
RF and LSTM are able to evaluate URLs at a rate of 942
per second and 281 per second respectively. Nevertheless,
a significant difference in the memory requirements of the
models is noticeable. While RF takes 288.7 MB of memory,
LSTM only employs 581 KB. This is crucial as there are
memory-restricted applications, such as mobile apps. In this
case. the RF model is unpractical and LSTM should be chosen.

In our analysis of the methodologies we found pros and
cons for both methods. The LSTM model shows an overall
higher prediction performance without the need of expert
knowledge to create the features. The downside is that inner
workings cannot be interpreted easily. Conversely, the RF
model on average achieved a performance 5 percentage points
lower than the LSTM model and needed expert knowledge to
create the features. However, the RF model can be interpreted
more easily due to input features and feature importance. In
general terms, neural network models require far more training
data, time and expertise to achieve satisfactory results than
traditional models such as RF. We showed how an RF can

be trained in less than 3 minutes, while LSTM required 238
minutes. Additionally, we have to take into account parameters
tuning in both models. In an RF model, we were required
to tweak the number of trees and the depth, two static vari-
ables. In LSTM, we tweaked the network architecture, which
includes number of epochs, size of inner layers, embedding
size, and dropout parameters, among others.

REFERENCES

[1] APWG, “Phishing Activity Trends Report, 3rd Quarter 2016,” Tech.
Rep. December, 2016.

[2] S. Roopak and T. Thomas, “A Novel Phishing Page Detection
Mechanism Using HTML Source Code Comparison and Cosine
Similarity,” in 2014 Fourth International Conference on Advances in
Computing and Communications, 2014, pp. 167–170.

[3] R. Dhamija, J. D. Tygar, and M. Hearst, “Why Phishing Works,” in
SIGCHI Conference on Human Factors in Computing Systems, 2006,
pp. 581–590.

[4] J. Vargas, A. Correa Bahnsen, S. Villegas, and D. Ingevaldson, “Know-
ing your enemies: Leveraging data analysis to expose phishing patterns
against a major US financial institution,” in 2016 APWG Symposium
on Electronic Crime Research (eCrime), 2016, pp. 52–61.

[5] J. Ma, L. K. Saul, S. Savage, and G. M. Voelker, “Learning to detect
malicious urls,” ACM Trans. Intell. Syst. Technol., vol. 2, no. 3, pp.
30:1–30:24, May 2011.

[6] S. Marchal, K. Saari, N. Singh, and N. Asokan, “Know Your Phish:
Novel Techniques for Detecting Phishing Sites and Their Targets,” in
International Conference on Distributed Computing Systems, 2016, pp.
323–333.

[7] T. Thakur and R. Verma, Catching Classical and Hijack-Based
Phishing Attacks. Cham: Springer International Publishing, 2014, pp.
318–337.

[8] M. Fernandez-Delgado, E. Cernadas, S. Barro, and D. Amorim, “Do
we Need Hundreds of Classifiers to Solve Real World Classification
Problems ?” Journal of Machine Learning Research, vol. 15, pp.
3133–3181, 2014.

[9] S. Marchal, R. State, and T. Engel, “PhishScore: Hacking Phishers
Minds,” in CNSM, 2014, pp. 46–54.

[10] Z. C. Lipton, “A Critical Review of Recurrent Neural Networks for
Sequence Learning,” CoRR, vol. abs/1506.0, pp. 1–38, 2015.

[11] T. Dietterich, “Machine learning for sequential data: A review,”
Structural, syntactic, and statistical pattern recognition, pp. 1–15,
2002.

[12] J. Woodbridge, H. S. Anderson, A. Ahuja, and D. Grant, “Predicting
Domain Generation Algorithms with Long Short-Term Memory
Networks,” http://arxiv.org/abs/1611.00791, nov 2016.

[13] J. Zhang, P. Porras, and J. Ullrich, “Highly Predictive Blacklisting,” in
17th USENIX Security Symposium, 2008, pp. 107–122.

[14] J. Ma, L. K. Saul, S. Savage, and G. M. Voelker, “Beyond Blacklists :
Learning to Detect Malicious Web Sites from Suspicious URLs,” World
Wide Web Internet And Web Information Systems, pp. 1245–1253,
2009.

[15] C. Whittaker, B. Ryner, and M. Nazif, “Large-Scale Automatic
Classification of Phishing Pages,” NDSS ’10, 2010.

[16] S. Abu-Nimeh, D. Nappa, X. Wang, and S. Nair, “A comparison of
machine learning techniques for phishing detection,” in Proceedings
of the anti-phishing working groups 2nd annual eCrime researchers
summit on - eCrime ’07, 2007, pp. 60–69.

[17] G. L’Huillier, A. Hevia, R. Weber, and S. Rios, “Latent semantic analy-
sis and keyword extraction for phishing classification,” in International
Conference on Intelligence and Security Informatics, 2010, pp. 129–
131.

[18] S. Marchal, J. Francois, R. State, and T. Engel, “PhishStorm: Detecting
Phishing With Streaming Analytics,” IEEE Transactions on Network
and Service Management, vol. 11, no. 4, pp. 458–471, 2014.

[19] S. Marchal, K. Saari, N. Singh, and N. Asokan, “Know Your Phish:
Novel Techniques for Detecting Phishing Sites and their Targets,” oct
2015.

[20] R. Verma and K. Dyer, “On the Character of Phishing URLs: Accurate
and Robust Statistical Learning Classifiers,” in ACM Conference on
Data and Application Security and Privacy, 2015, pp. 111–121.

[21] V. Ramanathan and H. Wechsler, “Phishing detection and impersonated
entity discovery using Conditional Random Field and Latent Dirichlet
Allocation,” Computers & Security, vol. 34, pp. 123–139, 2013.

[22] J. Ma, L. K. Saul, S. Savage, and G. M. Voelker, “Identifying
Suspicious URLs : An Application of Large-Scale Online Learning,”
in International Conference on Machine Learning, Montreal, Canada,
2009, pp. 681–688.

[23] R. M. Mohammad, F. Thabatah, and L. McCluskey, “Predicting phish-
ing websites based on self-structuring neural network,” Neural Com-
puting and Applications, vol. 25, no. 2, pp. 443–458, 2014.

[24] C. Ardi and J. Heidemann, “Poster: Lightweight content-based
phishing detection,” USC/Information Sciences Institute, Tech. Rep.
ISI-TR-2015-698, May 2015.

[25] G. Wang, H. Liu, S. Becerra, K. Wang, S. Belongie, H. Shacham, and
S. Savage, “Verilogo: Proactive phishing detection via logo recognition,”
UC San Diego, Tech. Rep. CS2011-0969, Aug. 2011.

[26] A. Le, A. Markopoulou, and M. Faloutsos, “PhishDef: URL Names
Say It All,” in INFOCOM, 2011 Proceedings IEEE, 2011.

[27] T. Berners-Lee, L. Masinter, and M. McCahill, “Uniform resource
locators (url),” Tech. Rep., 1994.

[28] L. Breiman, “Random Forests,” Machine Learning, vol. 45, pp. 5–32,
2001.

[29] F. A. Gers, J. Schmidhuber, and F. Cummins, “Learning to forget:
continual prediction with LSTM.” Neural computation, vol. 12, no. 10,
pp. 2451–2471, 2000.

[30] S. Hochreiter and J. J. Schmidhuber, “Long short-term memory,”
Neural Computation, vol. 9, no. 8, pp. 1–32, 1997.

[31] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg,
J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay, “Scikit-learn: Machine learning in Python,” Journal of
Machine Learning Research, vol. 12, pp. 2825–2830, 2011.

[32] F. Chollet, “Keras,” https://github.com/fchollet/keras, 2015.
[33] Theano Development Team, “Theano: A Python framework for

fast computation of mathematical expressions,” arXiv e-prints, vol.
abs/1605.02688, May 2016.

